166 research outputs found

    A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions

    Get PDF
    The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH) orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s method, one can eliminate the time variables from calculations, which results in a series of implicit equations. And the coefficients of results for all orders can then be obtained by the expanded equations and the numerical results can be reconstructed during the computing process. The precision and stability of the proposed method are proved by some examples, which show the numerical solution acquired is acceptable when compared with some existing methods

    Oocytes Selected Using BCB Staining Enhance Nuclear Reprogramming and the In Vivo Development of SCNT Embryos in Cattle

    Get PDF
    The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus–oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB− (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB− and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB− embryos (embryos developed from BCB− oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB− embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB− blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer

    A novel approach to melt purification of magnesium alloys

    Get PDF
    AbstractA novel low-cost method for melt purification of magnesium alloys, the melt self-purifying technology (MSPT), has been developed successfully based on a low temperature melt treatment (LTMT) without adding any fluxes. The iron solubility in the molten liquid of magnesium and its alloys, and the settlement velocity of iron particles were calculated. It is shown that the low temperature melt treatment is an effective method to decrease the impurity Fe content in magnesium and its alloys. Without any additions, the Fe content in the AZ31 alloy was reduced to 15 ppm from the initial 65 ppm, and the Fe content in the AZ61 melt was decreased to 20 ppm from the initial 150 ppm after the low temperature melt treatment. The results also showed that the Fe content in AM60 and AM50 dropped to 15 and 18 ppm, respectively, from the initial 150 ppm after the low temperature melt treatment. For ZK 60, the Fe content in the melt down to less than 5 ppm was achieved. After the low temperature melt treatment, the Si content in the above alloys was also decreased obviously

    Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit Programmable Superconducting Processor

    Full text link
    Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics. However, due to the exponential complexity that emerges from the enormous numbers of interacting particles, classifying large-scale quantum states has been extremely challenging for classical approaches. Here, we propose a new approach called quantum neuronal sensing. Utilizing a 61 qubit superconducting quantum processor, we show that our scheme can efficiently classify two different types of many-body phenomena: namely the ergodic and localized phases of matter. Our quantum neuronal sensing process allows us to extract the necessary information coming from the statistical characteristics of the eigenspectrum to distinguish these phases of matter by measuring only one qubit. Our work demonstrates the feasibility and scalability of quantum neuronal sensing for near-term quantum processors and opens new avenues for exploring quantum many-body phenomena in larger-scale systems.Comment: 7 pages, 3 figures in the main text, and 13 pages, 13 figures, and 1 table in supplementary material
    • …
    corecore